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Abstract

Despite the remarkable acceleration of robotic development through advanced simulation technology, robotic applications
are often subject to performance reductions in real-world deployment due to the inherent discrepancy between simulation
and reality, often referred to as the “sim-to-real gap". This gap arises from factors like model inaccuracies, environmental
variations, and unexpected disturbances. Similarly, model discrepancies caused by system degradation over time or minor
changes in the system’s configuration also hinder the effectiveness of the developed methodologies. Effectively closing
these gaps is critical and remains an open challenge. This work proposes a lightweight conformal mapping framework to
transfer control and planning policies from an expert teacher to a degraded less capable learner. The method leverages
Schwarz-Christoffel Mapping (SCM) to geometrically map teacher control inputs into the learner’s command space, ensuring
maneuver consistency. To demonstrate its generality, the framework is applied to two representative types of control and
planning methods in a path-tracking task: 1) a discretized motion primitives command transfer and 2) a continuous Model
Predictive Control (MPC)-based command transfer. The proposed framework is validated through extensive simulations
and real-world experiments, demonstrating its effectiveness in reducing the sim-to-real gap by closely transferring teacher

commands to the learner robot.

Keywords Transfer learning - Sim-to-real - Learning from experience - Motion planning and control

1 Introduction

In recent years, the advancements in simulation technolo-
gies have led to a significant surge in robotic research and
applications [1, 2]. Simulations provide a low-cost solu-
tion, virtual proving ground for designing and controlling
robots, allowing for rapid prototyping and testing without
associated risks [3]. However, despite the flawless perfor-
mance of behaviors and algorithms in simulated settings, the
“reality gap" between simulated and real environments and
inherent discrepancies in robotic models often lead to perfor-
mance degradation or even failures when directly applying
these well-developed techniques in the real world. Despite
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considerable time and resources devoted to creating tech-
niques within simulations, researchers still face formidable
challenges when applying these methods to specific plat-
forms in the real world. Thus, closing this gap is essential
for advancing the practical deployment of robotic systems
in diverse fields such as soft robotics applications [4] and
agriculture [5].

Moreover, understanding how to effectively bridge this
gap contributes to solving broader domain-transfer problems.
For instance, consider the impact of system aging. Although
systems before and after aging are different stages of the same
system with fundamentally similar dynamics, a velocity com-
mand that once effectively propelled the vehicle might result
in diminished speed due to wear and tear. This type of gap,
while distinct from the sim-to-real discrepancy, belongs to
the broader category of model mismatches discrepancy. Sim-
ilar problems are not limited only to mechanical aging, but
can also be found when dealing with environment changes,
external disturbances, software bugs, and even failures that
deprecate and modify the system’s original model. In this
paper, we seek a general framework to transfer and adapt the
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system’s performance from one vehicle to another. The goal
of the proposed work is to:

e reduce the sim-to-real gap allowing a developer to
quickly transfer motion planning and control methods
onto a real platform;

e transfer knowledge designed for a specific robot to a sim-
ilar robot;

e compensate for system deterioration/failures by quickly
learning the limits and the proper input mapping to con-
tinue an operation.

All of the aforementioned problems can be simplified as a
teacher transferring the control and motion planning poli-
cies to a learner. To address this transferring problem we
introduce a lightweight, conformal mapping-based transfer
learning framework as depicted in Fig. 1. The proposed
framework maps directly the control inputs of teachers to
learner systems, avoiding learning their dynamic models. The
framework also learns and considers the learner’s limits, so
that the transferred motion plan is achievable by mapped
control inputs.

In this work, we aim to provide a robust solution to the
pervasive problem of model mismatch in robotics, enhancing
both the efficacy and efficiency of deploying robotic appli-
cations. Overall, the contribution of this work is threefold:

1. Control Inputs Transferring: We present a lightweight
transfer framework, utilizing Schwarz-Christoffel Map-
ping (SCM) theory for the direct transfer of control inputs
from the teacher to the learner. This innovative approach
allows the learner to adopt the teacher’s control policies
without the need to understand its own dynamics.

Fig.1 A pictorial representation
of the proposed transfer method.
A desired command is
transferred from an expert
teacher to a learner, which may
differ from the teacher due to
unmodeled dynamics, failures,
disturbances and platform aging

Teacher
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Within our proposed transfer framework, we demonstrate
such transferring with two distinct types of control and
motion planning methods:

2. Motion Primitive-based Transfer: We leverage the pro-
posed transfer framework to first identify the teacher’s
motion primitives that the learner can execute, and then
transfer the associated discrete commands to the learner,
enabling replication of the teacher’s motions.

3. Model Predictive Control Transfer: We incorporate a
Model Predictive Controller (MPC) as a unified teacher
controller and path planner within the proposed transfer
framework. The framework imposes constraints on the
MPC to ensure that the optimized control input remains
within the learner’s operational limits. These inputs are
then mapped to the learner, allowing it to mirror the
teacher’s movements in a continuous control space.

In addition to the contributions mentioned above, we val-
idate the proposed sim-to-real mitigation framework with
extensive simulations and real-world experiments. To the
best of our knowledge, this work is novel in leveraging
the conformal mapping method for transferring control and
motion planning policies between robotic systems. Distinct
from existing literature, our work bridges the sim-to-real gap
by focusing exclusively on the domain of control inputs,
rather than attempting to learn specific model discrepan-
cies. By directly translating control inputs, we can achieve
a lighter-weight seamless transfer that avoids the need for
extensive data collection and training to learn the precise
model mismatch — which may not be always possible during
a mission.

Learner (Model Discrepancy)
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2 Related Work

In this section, we review the state-of-the-art transfer learning
methods in the current literature, especially those that focus
on domain migration in robotic applications and sim-to-real
problems. Subsequently, we discuss the conformal mapping
techniques used in robotic applications.

2.1 Sim-to-Real Transferring

The sim-to-real gap of transferring from the simulation to
the real world exists mainly because either the model is
not accurate or the environmental factors do not appear in
the simulation. One of the main approaches to mitigate the
sim-to-real gap or adapt to dynamic changes is to improve
simulation/model fidelity, ensuring the agent is trained in an
environment that is as realistic as possible. Several methods
leverage this idea. For example, [6] performs system iden-
tification to align new or simulated dynamics with reality
and adds learnable models for additional inputs, [7] builds
realistic training procedures that mimic how humans learn
in the physical world, [8] uses reward shaping techniques
to encourage greater exploration of correct behaviors, while
[9] propose a hierarchical learning method by providing
atomic actions that can be combined to create complex tasks.
However, these methods are computationally expensive,
especially if used online [10]. They are also not general-
izable as their abstractions target specific robots in specific
environment configurations. In contrast, our proposed frame-
work does not require extracting precise dynamics from
the actual system. Instead, it leverages a simple abstraction
model, enabling broader generalization and faster transfer.
Although we can always improve the fidelity of the simula-
tion according to the real-world observations [11], it is yet
not applicable to perfectly replicate the reality and may lose
generality when deploying applications developed in such
simulators as pointed out in [10]. Thus, apart from polishing
the simulator, it is necessary to develop a more robust con-
troller and planner or other transferring method to close the
sim-to-real gap.

As machine learning techniques have become widely
exploited, transfer learning has gained significant attention
in robotics toward addressing transferring problem. The core
concept of transfer learning is to migrate the knowledge
gained from one task to address similar tasks in diverse envi-
ronments. It takes advantage of existing knowledge [12] and
reduces the cost as well as the risk associated with data col-
lection and model training [13—15]. Researchers have been
investigating this topic through various strategies, including
domain randomization, domain adaptation, imitation learn-
ing, and large fundamental models etc.

Domain randomization approaches parameterize the dy-
namics and environmental conditions within simulations,

seeking to encapsulate real-world complexities through aug-
mented simulation scenarios [11, 16—18]. Despite the inten-
tion to bridge the sim-to-real gap, they often incur high
computational costs and can lead to over-generalization,
resulting in systems that are capable of handling a broad
range of unlikely scenarios but may underperform in typ-
ical real-world conditions. Additionally, in contrast to our
approach, this type of approach relies on strong assumptions
about the system model structure, which requires a simi-
lar parametrization between simulated and real robots. Our
approach overcomes these limitations by directly transfer-
ring control inputs and introducing perturbations only when
needed. Domain adaptation, a well-established technique in
machine learning, trains models with samples from a source
domain to effectively generalize to a target domain. Itis appli-
cable in situations where there is little prior knowledge about
the environment, and need to explore it by iteratively pol-
ishing the learned agent based on incremental knowledge
[19]. Meta learning [20] is another technique that has been
widely used for domain adaptation where a model is learned
in the real world or simulation, and a secondary model is
generated from the primary model to adapt to new behav-
iors, based on observed data in the physical world [21].
Our proposed method has some similarities in the problem
structure; however, we do not rely on fine-tuned learning
components and extensive training data for transfer. Proven in
computer vision, Transfer Learning method has been partic-
ularly useful for bridging the sim-to-real gap in vision-based
robotic control problems [22, 23]. Similarly, recent end-
to-end approaches [24] and RL-CycleGAN [25] also focus
on minimizing the sim-to-real disparity primarily in visual-
based control tasks by aligning the visual inputs between
reality and simulations. However, these approaches often
overlook the underlying model mismatches and are built
on the assumption that robotic controls are well-established
without sim-to-real discrepancies. This assumption repre-
sents a significant oversight-a challenge that our work aims
to address.

Another strategy that has been broadly explored is imi-
tation learning, also known as learning from demonstration
or behavior cloning, which enables robots to acquire new
skills by mimicking expert behaviors. This method shifts
from the traditional approach of learning through prolonged
repetition of simple tasks by directly deriving policies [26,
27], plans [28, 29], or rewards [30, 31] from an expert.
While this technique offers some performance guarantees,
it can be adversely affected by suboptimal or inappropri-
ate examples from the expert, and it lacks the ability to
handle complex tasks. Additionally, it is sensitive to envi-
ronmental changes, which can hinder its ability to generalize
effectively [32]. Consequently, imitation learning is not ide-
ally suited for addressing sim2real transfer problems, where
adaptability across varied real-world conditions is crucial.
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Recently, large foundation models have been adapted for
robotics applications, exemplified by [33, 34]. These works
have shown their effectiveness in high-level semantic rea-
soning using visual and language inputs. While they enhance
human-robot interaction and enable the transfer of high-level
plans between different robots and environments, their appli-
cation is limited to tasks for which the robots have been
explicitly trained. Although the potential for transferring con-
trol through transformers remains largely unexplored, the
extensive data requirements for training such models pose
a significant challenge for researchers.

2.2 Conformal Mapping

Conformal mapping is a mathematical technique used in
complex analysis. A conformal mapping function transfers
a complex domain onto another one while preserving angles
locally. Researchers have exploited this approach for geo-
metrical problems in robotics. Bayro-Corrochano et al. [35]
has introduced conformal mapping to aid in correcting the
distortion in robotic vision. Kosari et al. [36, 37] treat the
original path plan as a geometrical pattern and use conformal
mapping to adapt the plan to suit the task in specific settings.
However, the SCM method proposed in this paper is rarely
utilized in the robotics field. In [38], the SCM is employed
to transform planar motion into continuous linear motion,
addressing a coverage control problem for wire-traversing
robots. Our previous work [39] first brought the idea of lever-
aging the SCM method to directly transfer control inputs
between two systems. It shows the efficiency and effective-
ness of bridging the gap when transferring the path planner
and the controller between similar systems. However, the
previous work relies on motion primitives to achieve motion
plan transferring, whose transferring results are discrete and
highly depend on the size of the motion primitive library. In
this work, we enhance the generalizability and robustness of
the previously proposed transfer framework by 1) eliminating
the need for a dedicated calibration stage, thereby enabling
simultaneous learning of the learner’s limits and transferring
of control and path plan; 2) fully leveraging the learner’s
capabilities to allow transfers over a continuous command
space; 3) strengthening the framework’s ability to handle sys-
tem process noises and environmental uncertainties.

3 Problem Formulation

The problem addressed in this work can be considered as
a transfer learning problem from the teacher system to the
learner. The goal is to find a mapping function that allows
for a seamless translation of commands from the teacher to
the learner, ensuring they result in identical movements (i.e.,
reaching the same pose and speed). The user possesses com-
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prehensive knowledge of the teacher including its dynamics,
finely-tuned controller, and planner. In contrast, the learner
is treated as a black box to which we can send control inputs
and observe the full states.

Notation In this work, we use x7(¢) and x () to represent
the state of the teacher and learner systems while ur (t) C
R? and uy,(t) C R? represent the control inputs of the two
systems at time 7. The symbols # and u denote the upper and
lower bounds of the control inputs, respectively.

Formally, we define two problems in this context:

Problem 1 Teacher-Learner Control Transfer Given a tea-
cher robot with dynamics x(t + 1)=fr(xr(t), ur(t)) and
control law ur=g(x), find a policy to map ur to a
learner input uy, such that xp(t + 1)=fr (xp(t), up(t)) =~
fr(xp (), ur(t)), without knowing the closed-form of fr.

Problem 2 Teacher-Learner Motion Planning Adaptation
Consider a task to navigate from an initial location to a
final goal xg. Assume that the learner’s input space uj, €
[uy,ur] C lug,url; design a motion planning policy n%
for the teacher that considers the limitations of the learner
and such that the desired trajectory calculated, t, can be
tracked by the learner, i.e., such that ||x; — x;|| < € where
€ is a small deviation threshold.

We assume that the learner has similar kinematics as
the teacher but is less capable. By “similar", we mean that
they share the same configuration space C; = Cr and task
space T = Jr, and their kinematic models exhibit a fun-
damental similarity in structure and governing equations.
Although differences in parameters or external influences
underline their distinctions, a shared mathematical founda-
tion emphasizes their conceptual similarity. This similarity
provides a basis for applying methodologies across both sys-
tems. For example, both systems might be based on the same
dynamic models but with distinct parameter sets, or they
share identical parameters that fail to precisely reflect the
actual behavior of the learner system. Regarding “less capa-
bility", this implies that the learner’s command space is a
subset of the teacher’s Uy, C Ur. For instance, the learner
may not be able to drive as fast or turn as sharply as the
teacher. This allows the teacher to perform all the learner’s
maneuvers but not vice versa. The assumption aligns with
our focus on transferring knowledge from the simulated sys-
tem into a real-world vehicle, as a virtual system can often
be designed to surpass the limits of its real counterpart in
sim-to-real problems.

4 Methodology

To address the formalized problems, we propose a conformal-
mapping-based transfer learning framework. The block
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diagram in Fig. 2 presents the architectural overview of the
proposed framework. The highlighted blocks are the main
components for transferring the control inputs. Problem 1 is
solved by leveraging SCM to conformally map the teacher
vehicle’s control input to obtain the learner’s command. To
tackle Problem 2, we learn how to constrain the teacher’s
command domain so that the teacher’s control inputs, which
are yielded from the teacher’s control and planning policies,
are tailored to accommodate the learner’s limit after mapping.
This section presents the details of the proposed framework,
explaining how the two problems are solved.

4.1 Control Transfer

Command Pairing In order to derive the mapping function,
a fundamental step is understanding the correspondence
between a learner’s command and its equivalent from the
teacher. The teacher’s equivalents can be derived by comput-
ing the inverse kinematics of the teacher over the observed
learner’s motions. By linking the learner’s command u ;, with
the teacher’s equivalent ur that is capable of mirroring the
learner’s altered behavior, we can preserve the geometric
information of the command domains to grasp the difference
between the systems. Formally, we call such interconnected
commands a command pair which is defined as follows,

Up = (iTa ur)
st freen@®).ar®) = fLxL), uL() ey

where  ur = fT_l(xL(t), xp(t+1))

An illustrative example of a set of command pairs is color-
coded and presented in Fig. 3. However, it is impractical to
learn all the command pairs across the command domain.
The proposed transferring framework relies on conformal
mapping to find the rest of the command pairs by leveraging
a limited number of learned command pairs.

Fig.2 The block diagram of the
proposed mapping-based

transfer learning framework Teacher

Controller

Teacher
Planner

Schwarz-Christoffel Mapping-based Control Transferring Given
the command pairs, the transferring process can be viewed
as a geometric distribution transformation within the com-
mand domain. The proposed framework takes three steps to
derive the learner command as depicted in Fig. 3(b). First, the
learner uses the teacher’s control policy to generate a control
input which is the teacher’s desired command as if the learner
was the teacher. Then, depending on user preference, the
learner has the flexibility to choose multiple command pairs
from the teacher’s side, forming a poly-region that encom-
passes the teacher’s desired command. The corresponding
region on the learner’s command domain is automatically
determined by the learner’s commands associated with the
same command pairs as the teacher’s vertices. At last, the
Schwarz-Christoffel Mapping (SCM) is employed to con-
formally map the region in the teacher’s command domain
onto the region in the learner’s domain. This mapping allows
us to pinpoint the precise learner command capable of pro-
ducing maneuvers akin to those executed by the teacher in
response to the desired command.

For ease of comprehension, we guide our readers through
the mapping process using an example depicted in Fig. 4. In
the context of this work, we employ a variant of the SCM
theory which achieves a mapping from the interior of a poly-
gon to a rectangle. The overall mapping flow of the proposed
framework is shown in Fig. 4(a) where polygons from both
sides are first mapped to unique rectangles and a unit square
is borrowed to bridge both ends. During the process, a bi-
infinite strip is leveraged for using SCM to map a polygon to
arectangle (from 1 to 2, 5 to 4) as detailed in Fig. 4(b).

Specifically, to compute the SCM function from either
command domain to a rectangle, a polygon I" from the com-
mand domain is put onto the complex domain with the real
axis representing the linear velocity and the image axis for
the steering angle. Consider an irregular polygon I' with
vertices denoted as wi, ..., wy (Where N>4), arranged in a
counterclockwise manner as illustrated in Fig. 4(b). The inte-
rior angles at each vertex, a7, ..., o, 7, represent the angles
formed by the edges originating from and terminating at that

Transferring

ur(t) Schwarz-Christoffel u(t)

Mapping Learner

u, < ‘l=l,1*(t),uL(t) >

Build
Command Pairs

ur(t)

Retrieve
Equivalent
Teacher Commands

X.(®)
X (t+1)
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Teacher Command Domain

'Learner Command Domain

Teacher Command Domain Learner Command Domain

o~ Mapping
o} - ; )
o, ’ Region
x ©
u
T 4 -
° Q o
~
Q\ - - - -
[} o -~
o u, =< ur,u; >

(b)

Fig. 3 (a) Command pairs are color-coded. The dashed envelope indicates the learner’s limits on the teacher’s command domain; (b) Selected
command pairs for constructing the mapping regions are color-coded while the red cross marks the desired teacher command and the mapped

learner command

particular vertex. Initially, the prevertices z1, ..., zy on the
bi-infinite strip S are mapped to the vertices wy, ..., wy on
the polygon I' through:

z N
w=rl@=a [ Ts@dz+c @
j=0

where A and C are complex constants that rotate, translate,
and scale the polygon and are determined by the shape and
location of IP. Each factor f; sends a point on the boundary
of the strip to a corner of the polygon while preserving its
interior angles. By leveraging the Jacobi elliptic of the first
kind [40, 41], the SCM mapping from the bi-infinite strip S
to the rectangle Q is defined by:

1
2= f5(g) = — - In(sin(g|m)) ©)

b4
where ¢ is the point on a regular rectangle and m is the
modulus of the Jacobi elliptic that is decided by g. The
details of this conformal mapping can be found in [42]. With
Egs. 2 and 3, a desired teacher command located in the 7 is

Learner Command Domain

Teacher Command Domain

conformally mapped to a regular rectangle by:

q = fseuw) = 1§ (FF 7 w)). @)

The mapping function on the learner side is constructed fol-
lowing the same fashion. A unit square is borrowed to bridge
between the two mapped rectangles resulting in a complete
mapping process from teacher to the learner, such that any
teacher command that falls in the teacher’s mapping area is
connected to an image on the learner side.

4.2 Path Planner Transfer

The motion limit of the learner is associated with the
commands residing on the boundary of the learner’s com-
mand domain. To characterize the learner’s limits within
the teacher’s command domain, we leverage command pairs
with the learner component on its boundaries. The equivalent
teacher commands from these pairs form a convex hull that
effectively indicates the learner’s limits. Commands within
the interior of the convex hull correspond to feasible motions

ZN-2

Z .
L 2
D v-2 | M ... 92

an-1 q1

(b)

Fig. 4 (a) Mapping flow of transferring the desired teacher command to the learner; (b) Mapping of the polygon to a rectangle while using the

bi-infinite strip as the intermediate plane
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for the learner. Figure 3(a) demonstrates this method. Estab-
lishing such a convex hull provides evidence for imposing
constraints on the teacher’s controller and the path planner,
ensuring that the commands generated remain within the hull,
thus making the path achievable and able to be accurately fol-
lowed by the learner. In cases where the command pairs used
for constructing the convex hull do not confine to the learner’s
boundary, the corresponding area of the convex hull does
not encompass the entire learner’s command domain, sug-
gesting that the transfer is not fully exploiting the learner’s
potential. Conservatively, a straightforward approach is to
assess the learner’s limit before transferring, isolating it from
the transfer process through a dedicated calibration stage.
During this calibration phase, a series of extreme learner
commands are imparted to the learner to assess its motion
limits. Upon the conclusion of the calibration stage, the char-
acterized learner’s limit is finalized and is used for imposing
the constraints on the teacher’s controller and planner.
Alternatively, another approach is to dynamically adapt
the boundary of the learner’s limit whenever it is needed
along with the transferring process. When a new command
pair, which behaves as an outlier in comparison to all existing
command pairs, is introduced, it triggers a recalculation of the
boundary in the teacher’s command domain. On the one hand,
if the newly established command pair resides on the bound-
ary of the learner’s command domain, the equivalent teacher
command marks the upper or lower boundary of allowable
teacher commands. Subsequently, all other existing normal-
ized learner command pairs are also re-scaled to account for
the adjustments in the command range. Figure 5(a) presents
an example for this case, where the yellow dots indicate
the newly added command pair. On the other hand, if the
new command pair outlier does not align with the boundary
of the learner’s command domain, the range of permissible

Normalized Teacher Command Domain  Normalized Learner Command Domain

'
'
'
'
1
'
'
'
'
i
O O !
1
1
1
'
'
'
'
'
'

(a)

Fig. 5 Examples of characterization of learner’s limits on the teacher
command domain. (a) the new command pair directly marks the bound-
ary of allowable teacher command; (b) proportionally shrinks the

teacher commands undergoes proportional reduction. This
proportional adjustment can be computed using Eq. 5 and is
visually demonstrated in Fig. 5(b).

= ﬁTnurm
UTyormmax = — (5)
ULnorm

5 Case Studies

To show the generality and effectiveness of the proposed
transferring framework, in this section, we showcase trans-
ferring two types of representative control and path planning
methods. In the first study, we incorporate our framework
with a motion primitive-based planning approach, one of the
widely used searching-based approaches in robotics [43—
45]. The command sequence associated with the selected
motion primitive is used for transferring and controlling the
learner. Given the limited number of primitives, this study
transfers the control inputs in a discretized command space.
Such planner can benefit from a smaller discrete optimal
searching space. In the second case, we transfer a Model
Predictive Controller (MPC), a commonly used control strat-
egy [46—48], from the teacher to control the learner over a
continuous command space. The learner can benefit from the
continuous control input for a smoother and closer tracking
performance. Both scenarios operate effectively whether or
not the learner’s limits are pre-configured.

5.1 Motion Primitive-Based Transferring
The overall structure of the approach is depicted in Fig. 2. A
motion primitive is a sequence of states that a vehicle per-

forms within a short period. Motion primitives-based path

Normalized Teacher Command Domain  Normalized Learner Command Domain

Tt T
|
|
i
|
| o
h
o | o
o o—n ' [)
1
O O !
o~—<|p ! o o ‘I?
" 1
o 1 1 o :
| 1 !
! ' i
) 1 1
— : i 1
UTworm [ _: Ubnorm H
3 i a
| ] j i
D —
Uy prmlma 1

(b)
teacher’s command space to approximate the learner’s limits as the

learner portion of the command pair is an outlier but not on the bound-
ary
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planning utilizes a library of predefined motion primitives to
search for and compose a sequence that closely approximates
the desired path within certain bounds. In this case study, the
learner’s limits are determined in advance by collecting com-
mand pairs # p,=(ur,ur) where up € {u; Uur}. Figure 6
uses an example to show the command pairs in gray dots and
highlights the learner’s limits with the white envelope. Each
teacher motion primitive p;=[xr, X2, ..., XT;] is created
by applying a fixed control input to the teacher for a specified
duration. The primitives and their corresponding commands
are color-coded in the figure. The transfer of the path plan-
ner is achieved by excluding primitives whose associated
control inputs exceed the boundary of the learner’s limit, as
illustrated by the crossed-out motion primitives and their cor-
responding control inputs. During the planning phase, the
teacher’s path planner searches primitives from the library
and evaluates the difference between each of the primitives
and the corresponding segment on the desired path P. As
shown in Eq. 6 and in Fig. 6, the difference is measured by
considering both the dynamic time warping (DTW) distance
ey between the motion primitive and the corresponding seg-
ment of the desired path and the heading difference ey at the
end of the primitive:

Si =ka-eq+ko-eg
=kq - DTW(P, pi) +ko - |(Op — 0p,)] (6)
pr =
1

The two types of differences are adjusted by user-defined
gains (kg>0, kp>0). A higher k; ensures that the vehicle
remains closer to the trajectory, while a higher kg increases
the likelihood of selecting primitives that align more closely
with the trajectory’s orientation. Using these metrics, the
planner evaluates all the primitives in the library, selecting
the one that minimizes deviation as the optimal local path

Teacher Command Domain

........ S/

o

; © o ¢
/ |
/| e %@
e ®* |
‘ L) L
o o
_— %

Fig.6 Anexample of the transfer framework with primitive-based path
planning
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plan p;. The associated teacher’s control input . is then the
command that will be transferred to the learner. The process
of selecting command pairs and constructing the mapping
polygon region can be outlined in the following steps:

1. Perform Delaunay Triangulation: Execute Delaunay
triangulation on the teacher command domain to effi-
ciently identify the triangle that includes u inside.

2. Construct Teacher Polygon: Combine the triangle that
covers u with one of its adjacent triangles to obtain the
four vertices needed for constructing the polygon on the
teacher’s side.

3. Determine Learner Polygon: Follow the same com-
mand pairs, the corresponding polygon on the learner’s
side is determined.

4. Verify Polygon Simplicity: Ensure that both resulting
quadrilaterals qualify as simple polygons by verifying
that there are no edge crossings, except at the vertices.

If edge crossings are detected during the simplicity check in
Step 4, a different adjacent triangle should be selected in Step
2 to re-select the vertices and adjust the polygon formation.
These steps ensure that the polygons are correctly formed
and meet the required geometric conditions for computing
SCM functions.

Due to differences between the teacher and the learner, the
learner may not perfectly replicate the teacher’s motion, par-
ticularly when there are insufficient command pairs near ur,
forcing the use of command pairs that are farther from it to
construct the mapping region in Step 2. These motion devi-
ations are typically not critical since the command sequence
only lasts a short period and the planner can correct it at the
next planning step. However, such deviation can pose safety
risks when the learner operates in a cluttered environment. To
enhance safety, we implement an event-triggered mechanism
that continuously monitors the learner during operation. The
monitor measures the distance d; between the learner and the
planned path, triggering a re-planning procedure if the devi-
ation exceeds a threshold €. The threshold is designed to be
dynamically changed and correlated with the minimum dis-
tance between the vehicle and the surrounding obstacles in
the vehicle’s field of view (FOV). Specifically, the threshold
is defined as:
€={n~min(||xL—in||) i=1,2,...,Np, -

€ i=d,

where N, O is the number of obstacles in the learner’s field of
view, x; is the position of obstacle i, € denotes the max-
imum deviation allowed, and 7 is a constant. This setup
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Table 1 Parameters for motion

primitive transferring L (m/s) v (m/s) @ (rad/s) @ (rad/s)
simulations and experiments Simulation Teacher 0 3 /3 /3
Learner 0 —/8 /8
Experiment Teacher 0 1.6 —-1.2 1.2
Learner 0 1 —1 1

enables the planning process to adopt a more conservative
approach when navigating near obstacles, allowing for timely
intervention before the learner completes the current local
plan.

Simulation Results We validate our transferring framework
in simulation through a case where the vehicle suffers from
compromised dynamics. The kinematics for the vehicle are
given by the following unicycle model:

Xk+1 Xk Vg COS O v
Vit1l | = | Yk |+ At | vesin6 |, wp = [Vi] (8)
Ok+1 Ok Vi

where v and o denote the linear and angular velocities
respectively. The command ranges for both the teacher and
the learner in this study case are detailed in Table 1. The
SCM method is implemented using the MATLAB Schwarz-
Christoffel toolbox [49] and a Gaussian noise of G ~
M0, 0.1) is added to the learner’s position to simulate mea-
surement errors. The learner is asked to follow a “S"-shaped
trajectory through a cluttered environment as shown in Fig. 8

As shown in Fig. 7(a), a 5 x 5 grid of command pairs are
collected beforehand. The boundary of the command pairs
on the teacher’s command domain marks the limitation of
the learner. Figure 7(b) shows all of the teacher’s motion
primitives alongside their corresponding commands, each

Normalized Learner
Command Domain

Normalized Teacher
Command Domain

1 1 € Command Pairs
----- Learner’s Capability
N I G e
075 . . . 075 '
e e o &
|
h
3 05 . . 3 05 e o o 4
i
. ]
|
0.25 . . . 0.25 i
b - e --o-—0-- o
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
v (a) v

generated by driving the teacher with a specific control input
for 1s. Out of the 121 motion primitives, 35 are retained for
path planning after excluding those that exceed the learner’s
limits.

Figure 8 shows two snapshots from the simulation, illus-
trating that the learner closely follows the desired trajectory.
For the teacher’s path planner, we set the planning horizon at
2, meaning the local path consists of two primitives. The
learner adopts more conservative maneuvers in clustered
areas compared to open spaces, due to a smaller tolerance
for deviation and more frequent triggering of replanning to
enhance safe operations.

In Fig. 9, we show the result of the baseline learner for the
same task. The baseline learner directly applies the teacher’s
commands, unaware of any necessary adjustments for its
dynamics. As expected, the learner fails because it uses com-
mands not adapted to its new dynamics.

Experiment Results The real experiments, similar to the setup
in simulation, are conducted for transferring the planning and
control knowledge from the same simulated teacher to differ-
ent learner vehicles in the real world. The command ranges
for the vehicles are listed in Table 1. The vehicle control is
managed via the MATLAB ROS Toolbox in conjunction with
the Robot Operating System (ROS) [50]. The experiments
are conducted indoors, with the vehicles’ states tracked by

Normalized Teacher
Command Domain

Teacher Primitives

=== Available Primitives
- Discarded Primitives
- — 40~ = —0%- —0- - =@ )
075 '
o |o o & 2
..... : ]
3 05 o-a-0s—e {: $15
..... |
o o o
---- || © Command Pairs
0.25

L - <o <-0r-o--o @ Primitive Commands
Discarded Primitive Command
----- Learner’s Capability
0 0
0 02 04 06 08 1 2 -1

! (b)

Fig. 7 Examples of learner’s limits assessment and transfer of path planner. (a) The command pairs are color-coded across the two command
domains; (b)The primitives within the learner’s limit are preserved for path planning
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Simulation Result
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Fig. 8 Simulation result of a learner following an “S"-shaped path (a). The local path planning and the SCM mapping results for the robot at
position ‘A’ are shown in (b), (c), (d), and the results at position B’ are shown in (e), (f), and (g)

a VICON motion capture system. All physical experiments
were conducted using different ground vehicles and a base
computer equipped with an Intel i7-6500U and 8 GB of RAM.
For each experiment, the robot’s controller, planner, and the
proposed transfer framework are run on the base computer
and the transferred commands are directly transmitted to the
robot through ROS. Because the MATLAB SCM Toolbox
asymptotically approximates the solution to the SCM prob-
lem, the solving time varies depending on the shape of the
mapping area. In our implementation, the entire pipeline typ-
ically runs at around 25 Hz (though this may fluctuate), while
the experiments included in this work were conducted at 10
Hz, which proved sufficient for controlling the various robots
examined in this study. For applications requiring faster con-
trol rates, more optimized or compiled implementations can
significantly improve computational speed over the current

Primitive Path Planning

12 3.6
() Learner Robot FOV
10 34 | = Optimal Motion Plan
—— Motion Plan Candidates
£ 8 e Desired Trajectory
> 6 = 5 Obstacles
4
2.8
2 /
0 . 2.6
0 5 10 45 5 5.5
x/m x/m
(a) (b)

implementation which relies on the MATLAB SCM Tool-
box.

In the first experiment in Fig. 10(b), a Clearpath Robotics
Jackal UGV is treated as the learner vehicle for tracking an
“S"-shaped path through a gate. We characterize the vehi-
cle’s limits by constructing initial command pairs with a
set of commands that consists solely of its upper and lower
boundary commands, each executed for a duration of Is.
The command pairs and the teacher’s primitives used for
planning the learner’s path are displayed in Fig. 10(a). To
assess the robustness of our proposed approach, the learner’s
initial heading is set with a Zrad offset from the desired
orientation. During the tracking task, the maximum distance
recorded between the desired path and the actual trajectory
was 0.1905m, while the maximum deviation between the
actual trajectory and the local motion plan was 0.0293m.

Normalized Teacher
Command Domain

Normalized Learner
Command Domain

1 1 @ Command Pairs 1 p—————
O Teacher Command @ Learner Command ‘
Equivalent Teacher C d
L 075 @ Equivalent Teacher omma; bs . I
= 0.5 ’
5 0.25 ’
6 0 0.5 1 0 0.5 1

normalized v normalized v

(c) (d)

Fig. 9 Simulation results for baseline learner. (b),(c), and (d) show the primitive path plan, the normalized teacher command domain, and the

normalized learner command domain at the time instance in (a)
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Fig. 10 Figure (a) Jackal’s limits is indicated within the white envelope. The gray points on the dashed boundary are the command pairs that
calibrate the Jackal’s limits. The blue-colored commands and primitives are used for the Jackal; (b) Jackal experiment with the proposed approach

Given the vehicle’s initial misalignment with the desired path
and its dimensions of approximately 0.5m x0.43m x0.25m,
this deviation can be considered negligible. For comparison,
the baseline experiment was conducted without the SCM
component and the results are shown in Fig. 11.

To demonstrate the generalizability of our proposed
framework, we conducted an additional experiment using a
Turtlebot-2 UGV as the learner with the same learner config-
uration listed in Table 1. The command pairs and primitives
used for the Turtlebot are depicted in Fig. 12(a). The results
indicate that, with our proposed approach, the Turtlebot
successfully adapted the teacher’s controller and path plan-
ner to follow the desired path with a maximum deviation of
0.1381 m. The tracking error between the learner’s trajec-
tory and the planned primitive remained within 0.0978 m,
demonstrating close alignment as illustrated by the nearly
overlapping path plans and final trajectory in Fig. 12(b).

5.2 Continuous Space Transferring

One of the primary limitations of motion primitive-based
path planning transfer is that the commands available for

Desired Path
— Learner Trajectory
—— Teacher Primitive
[ Obstacle

e —

Fig. 11 Jackal experiment results for directly applying the teacher’s
commands

mapping are constrained by the number of motion primitives
in the library. Once the motion primitive is selected through
an exhaustive search, the learner must map and execute the
associated command sequence, either until completion of
the current sequence or until an event-triggered re-planning
intervenes. This results in the learner having only a limited
number of discrete commands to choose from. Additionally,
the fixed length of the command sequence may hinder the
learner’s ability to quickly adjust to deviations. Furthermore,
significant effort is required to obtain the motion primi-
tives and calibrate the learner’s limits in advance. To address
these limitations, we introduce a case study that incorporates
a receding horizon controller within our proposed transfer
framework. Specifically, we utilize MPC as a unified method
for both control and local motion planning for the teacher.
Additionally, we demonstrate how to dynamically learn and
adjust the learner’s limits from scratch without separating it
from the transfer process.

Model Predictive Controller The simulated teacher uses the
same model as introduced in Eq. 8. The teacher exploits an
MPC that tracks the desired path while avoiding the obsta-
cles. The cost function and the optimal control problem are
formalized as Eq. 9.

2 2
e, ) =[x —x N + lu — u|y

N—1
H}}n Iy (x0, u) = Z L(xg, ug)
k=0
st Xpg1 = fr(ex, ug)
lxx — x|l > ri, Vi € [1, No] )

x; € X, Vk € [1, N]
ur e U,Vk e [1I,N — 1]

u/ffu

where N and N denote the predicting horizon and the num-
ber of obstacles respectively. x; and r; denote the position
and the radius of the i’ obstacle. We cap the changing rate
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Fig.12 (a) Command pairs and primitives for the Turtlebot-2 experiment ; (b) Turtlebot-2 experiment snapshots with the proposed approach

of the input at €, as we ignore the acceleration period out
of simplicity. x and u# denote the system’s state and con-
trol input, respectively. The reference states x'¢ are sampled
along the desired path, starting from the point closest to the
teacher. Each subsequent point is spaced at the maximum
distance the teacher can traverse along the path within one
timestep, thus optimizing the time required to complete
the task. The control references u’® is initialized to zero
during the first planning iteration and, in each subsequent
iteration, is warm-started using the control sequence from the
previous iteration, accelerating convergence to the optimal
control inputs. During the early stages of the transfer pro-
cess, users have the flexibility to adjust the spacing between
these reference states. This allows the teacher to perform
a variety of maneuvers, which aids in populating the com-
mand pairs across the teacher’s command domain. Whenever
the command pairs are updated, leading to a refinement in
the configured learner’s limits on the teacher’s command
domain, the constraints on U are revised to align with the
updated operational boundaries of the learner. This adjust-
ment ensures that the optimized control inputs consistently
remain within the defined limits of the learner.

Normalized Teacher Command Domain

o :
2 T o
o o o]
[ J
o s\\\ n 1= n 1 o .;.‘:
o \\\\ up:<Z;uTi,25uu> . s
~~.] i=1 i=1 —_’,"

Command Pair Refinement When constructing command
pairs, the process of identifying equivalent teacher com-
mands is relatively straightforward in scenarios with subtle
motion noise, as the same learner commands typically result
in almost identical motions and, consequently, nearly identi-
cal equivalent teacher commands. However, when motion
noises are non-negligible, variations in motions result in
inconsistent equivalent teacher commands for even the same
learner command, complicating the retrieval of the correct
equivalent teacher command.

To address this issue, we refine the definition of command
pairs by first partitioning the normalized learner command
domain into grid cells. Subsequently, the previously defined
command pairs are grouped into clusters based on whether
their learner components are within the same cell. Each
refined command pair is then derived by averaging those
within the same cluster and a user-defined minimum clus-
ter size, kmin, 1S introduced for constructing command pairs.
Figure 13 demonstrates the refined command pairs.

Controller and Path Planner Transferring 1If the learner’s lim-
its have already been characterized, transferring the teacher’s

Normalized Learner Command Domain

Fig. 13 An example of the refined command pairs and the corresponding clusters. Command pairs are color-coded and shown in circles with black

edges
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command to the learner resembles the previous case, except
the available teacher commands are within the continuous
space constrained by the learner’s boundaries. In scenarios
with few or no pre-learned command pairs, to facilitate accu-
rate control transfer, it is desirable to construct as many
command pairs as possible in a timely manner. For learners
with non-negligible motion noise, Increasing kp;, improves
the precision of the command pairs but also prolongs the time
required for constructing them. To accelerate this process,
without losing generality, we offer strategies to accelerate
the construction of command pairs to compensate for the
increased effort required in collecting more commands.

Our comprehensive framework with these enhancements
is shown in Fig. 14. We emphasize the components that help
in scenarios where existing command pairs are insufficient.
When existing command pairs cannot form a polygon area
that includes the desired command, the cell containing the
desired command may or may not already have a configured
command pair. If no command pair is configured in the cell,
the learner directly adopts the teacher’s command, indicating
that it has not yet recognized the local geometric differences
across the command domains of the two systems. Conversely,
if a command pair is present in the cell, the learner samples
the desired command from unconfigured adjacent cells, as
illustrated in Fig. 15. In this example, existing command
pairs are depicted as gray dots. Instead of directly using
the teacher’s command (located in the red cell), the learner
selects a command from one of the adjacent cells.

o N
Transferring 'j

1
Teacher Teacher | ¥r(®) | schwarz-Christoffel | #t(t) Leamner
Planner Controller Mapping

- -

Normalized Learner Command Domain

i P P i H
T T T T T
i i i i i

Fig. 15 An example of perturbing the desired learner command to one
of the adjacent empty command cells

Simulation Results The initial command ranges for the
teacher and the learner are outlined in Table 2. Dur-
ing the transferring process, the teacher’s command range
corresponds to the range of the refined learner’s limits. We
intentionally unbalanced the turning abilities towards both
sides to increase the discrepancies between the two systems.
The kinematic model of the simulated learner is similar to
that of the teacher. However, to further demonstrate the effec-
tiveness of the proposed approach, we introduced a nonlinear
transformation within the learner’s model to further increase
the dynamical differences between the teacher and the learner

Retrieve
Equivalent
Teacher Commands

ur'(t) =ur(t) + 6

Teacher ur(t)

Y

Sample
Perturbation &

Model Predictive Controller

Cell for ur (O)N,_YeS

unconfigured

ur(t) ur'(t)
SCM Schwarz- | £ oo, cur(t)) w, ()
X Christoffel
Available .
Mapping

P {p <ur(t), u,(t) >}

P {p <up(t), u,(t) >}

Fig. 14 The block diagram of the proposed SCM-based learning framework without pre-learned learner’s limits. The changes needed to accom-

modate unknown learner’s limits are highlighted in the zoomed-in window
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system. The specific formulation of the learner’s model is
described in Eq. 10 and the employed nonlinear functions
are depicted in Fig. 16. The learner’s command domain is
divided into an 11 x 11 grid for grouping and constructing
command pairs, with a minimum cluster size of (k,;, = 5)
set for the simulation.

Xk+1 Xk d(hy(n(vr))) cos(6k) y
i+l | = | Yk | + At | d(hy(n(vy))) sin(6) |, up= [wk]
O] Lo d (he(n(wy))) ¢

where, h,(v) = v3

hy(@) =4 - (w—0.5)°+0.5

n(x) = (x = x;)/(xp = x;)

d(x) =x-(Xp —x,)+ X%,
Figure 17 illustrates the results of following a desired path
without any pre-existing command pairs. In this setup, we
compare the performance of a learner using our proposed
transfer framework against an ideal teacher and another
learner that directly applies the teacher’s commands as the
baseline. All three simulations start from the same ini-
tial pose, intentionally misaligned with the desired path.
Figure 17(a) shows that using our approach, the learner’s tra-
jectory closely follows that of the ideal teacher, except during
an initial adjustment period while the framework adapts to
the learner’s capabilities. The command pairs built during
the tracking task are depicted in Fig. 17(b) through (e). The
learned learner’s limits are marked by a red rectangle on the
teacher’s command domain which closely approximates the
properties setin Table 2. The significant nonlinearity between
the two systems is evident when comparing the distribution
of command pairs across the command domains of both sys-
tems (Fig. 17(b) and (d)).

Figure 21 presents snapshots at different stages of the
simulation. The first column compares the trajectories and
tracking progress at specified times. Row (b) highlights how
the learner perturbed the original desired command to expe-
dite the construction of command pairs in an unconfigured
cell. This perturbation resulted in introducing a new com-
mand pair, leading to proportionally shrink the learner’s
minimum angular velocity limit, as indicated by the red rect-
angle on the teacher’s command domain. Row (c) displays
an example of using SCM to derive the learner’s command,

P

Py

0
0 v/w 1

Fig.16 The nonlinear functions employed to alter the learner’s dynam-
ics in simulations

where the equivalent teacher command overlaps with the
desired teacher command, demonstrating the effectiveness of
our transfer framework between the teacher and the learner.
Finally, row (d) shows the final frame of the learner that uses
the proposed framework.

Figure 19(b) shows a comparison of the time taken to
complete the same path-tracking task. Notably, the learner
using our proposed approach completes the task shortly after
the ideal teacher, while the learner that directly applies the
teacher’s commands is still in the early stages of the task. This
comparison illustrates that our transfer framework enables
the learner to not only closely mimic the teacher’s maneu-
vers but also to closely match the teacher’s performance.
Figure 19(c) compares the deviation from the desired path
throughout the tracking progress. For ease of comparison,
we present Fig. 19(a) as a reference for task progress indi-
cated as black dots along the tracking path. The errors from
the learner with our approach closely align with those of the
ideal teacher. Larger deviations occur only when the path
requires commands from an unconfigured area of the com-
mand domain. Once the learner constructs new command
pairs in that area, the deviation significantly decreases, effec-
tively aligning with the teacher’s performance. In contrast,

Table2 Parameters for MPC

transferring simulations and L (m/s) v (m/s) @ (rad/s) @ (rad/s)
experiments Simulation Teacher 0.05 0.6 —/4 /4
Learner 0.05 0.3 —m/16 /12
Experiment Teacher 0.05 0.6 —/4 /4
Learner 0.05 0.2 —/8 /8
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Fig. 17 Simulation results of SCM-based transfer with MPC. (a) trajectories comparison; (b) teacher command domain; (c) normalized teacher

command domain; (d) learner command domain; (¢) normalized learner command domain

the baseline learner shows dramatic differences compared
with the ideal teacher.

To demonstrate the effectiveness of our transfer frame-
work, based on the command pairs and characterized learner
limits from the simulation result, we did an exhaustive test
of transferring a dense grid of teacher’s commands within
the learner’s limits. The test compared the ideal simulated
teacher, the baseline learner, and the learner with transfer
method. Given the same teacher command, all three systems
start at the same initial pose and drive for 0.1s. We measure
the position errors as well as the orientation errors between
the teacher and the two learners. The results are depicted
in Fig. 20. In the figure, (a) categorizes the normalized
teacher command space based on the method that the learner
with SCM employed: SCM mapping, direct application of
teacher commands, or perturbation for exploring unconfig-
ured spaces. (b) and (d) present the position errors between
the ideal teacher and the learners, while (c) and (e) show
the orientation errors. The results reveal minimal heading
and position errors in areas using SCM mapping (corre-
sponding to the yellow area in (a)), suggesting maneuvers
nearly identical to the teacher’s. In areas with sparser com-
mand pairs, the construction of the mapping polygon utilizes
command pairs that are distant from the desired teacher com-
mand, resulting in slightly higher errors as expected due
to a lack of local geometrical information. Conversely, the
baseline learner struggled to match the teacher’s behaviors
showing larger errors in both position and orientation com-
pared with the ideal teacher.

Experiment Results The SCM-based transfer framework
with MPC was also validated with real vehicles. The hard-

ware setup is similar to the previous study case in Section 5.1.
The parameters used for the simulated teacher and the learner
vehicle, Clearpath Robotics Jackal, are listed in Table 2. The
learner’s command domain is divided into 11 x 11 grid cells
with k,,,;,, = 20. The nonlinear transformation functions used
to further alter the Jackal’s kinematics are described in Eq. 11
and their visualizations are depicted in Fig. 18.

hy(v) = v’
he(w) = 314207 —109.910° — 144.650° — 86.98w"
+24.77w° — 5.080° + 2.120
(11)

0 v/w 1
Fig. 18 The nonlinear functions employed to alter the learner’s dynam-

ics in experiments
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Fig. 19 Figure (a) shows a comparison of the progression over time among the proposed approach, the baseline, and the ideal teacher; (b) compares

the deviation from the desired path in relation to the task’s progression

Due to limited indoor space, a set of command pairs char-
acterizing the Jackal’s limits was pre-constructed. Figure 22
shows the results of a path-tracking experiment with the
Jackal, with snapshots provided in Fig. 23. The Jackal starts
positioned away from the desired path. In Fig. 22(e), the pre-
constructed command pairs are circled, with those updated
during the experiment highlighted in blue. Most commands
sent to the learner are derived through conformal mapping,
while a few low-velocity commands are directly applied or
perturbed from the teacher’s commands due to the absence
of a suitable polygon for SCM application.

Position Error

The effectiveness of the proposed transferring framework
is further validated by comparison with a baseline Jackal for
the same task, where teacher commands are directly applied,
as shown in Fig. 24. The baseline Jackal moved much slower,
failed to follow the path and ultimately collided with an obsta-
cle. In a separate test, we deactivated the transfer framework
at various points during the task, which led to the direct appli-
cation of the teacher’s control inputs after the deactivation.
Figure 25 shows the Jackal’s trajectory after the framework
is turned off, and in all five cases, the Jackal deviated from
the desired path colliding with obstacles.

Orientation Error
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Fig.20 Results from extensive testing of SCM-based command trans-
fer: (a) Normalized teacher command domain (min-max normalization
within the learner’s limits); (b) Position errors between the teacher and
the baseline learner; (c) Orientation errors between the teacher and the
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baseline learner; (d) Position errors between the teacher and the SCM-
enhanced learner; (e) Orientation errors between the teacher and the
SCM-enhanced learner, all given the teacher commands and drive the
systems for 0.1s
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Fig. 21 Examples from simulations demonstrating the use of SCM to
transfer MPC from a teacher to a learner at various time frames. Each
column: 1) compares the trajectories between the simulated teacher,

6 Conclusion and Discussion

In this work, we have introduced a novel, lightweight transfer
learning framework based on conformal mapping, designed
to bridge the sim-to-real gap and address model mismatches.
Our transfer framework achieves control transfer in both
discrete and continuous command space, exemplified by

baseline learner, and our learner with SCM; 2) teacher command domain
and configured learner’s limits; 3) normalized teacher command domain
within the learner’s boundary; 4) normalized learner’s command domain

successfully transferring two representative methods (MPC
and motion primitive-based motion plan) in autonomous
mobile robot applications. We enhanced the robustness and
generalizability of our proposed method by 1) clustering
the command pairs to address the challenge of construct-
ing command pairs in the presence of unneglectable motion
noise; 2) actively refining the learner’s limits along with the
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Fig. 22 (a) snapshots of the experiment; (b) compares the trajectory
between the ideal teacher in simulation and the learner with the pro-
posed approach; (c) summarizes the method used for obtaining the final

transferring process, eliminating the need for a dedicated
calibration period. The effectiveness of the framework is vali-
dated with extensive simulations and real-world experiments.

Our framework achieves seamless behavior transfer bet-
ween a known teacher system and an unknown learner
system by directly transferring control inputs without need-
ing to precisely model the learner. The control transfer
within our framework is based on command pairs that
elicit identical maneuvers in both the teacher and learner
systems. It operates by first learning the geometrical dis-
tribution of these command pairs, and then employing the
Schwarz-Christoffel Mapping method to map between these
pairs. This mapping accurately locates the corresponding
learner command for a given teacher command, ensuring
the desired maneuver is replicated in the learner vehicle.
Conformal mapping is well-established in two-dimensional
spaces but becomes considerably more complex and limited
in higher dimensions. Therefore, we concentrate on systems
whose input spaces are inherently two-dimensional or can be
bijectively represented in two dimensions. Since SCM is sup-
ported by rich and robust mathematical theories, our design
choices are driven by mathematical principles to optimize the

@ Springer

learner’s command; (d) and (e) present the color-coded command pairs
on the teacher’s and the learner’s command domain respectively after
following the desired path

performance of the mapping function calculation. We pick
out a few key design points that are worth mentioning here:

1. Using bi-infinite strip in rectangle SCM. “Crowding” is
one of the greatest challenges for numerically computing
conformal mapping functions. The high ratio of an elon-
gated shape can lead to a situation where the prevertices
are spaced exponentially close on the real axis becom-
ing indistinguishable. A bi-infinite strip can significantly
ease the effort of solving numerical SCM solutions over
the elongated shape. Even for a less elongated shape, this
can speed up the computing process. As mathematically
solving the SCM is not the main contribution of this work,
we direct readers to refer [42, 51] for a qualitative anal-
ysis of how using bi-infinite strip eases rectangle SCM
computation.

. The reason of choosing rectangle SCM. While our
proposed transfer framework primarily utilizes rectan-
gle SCM, which maps polygon regions with at least four
vertices (N > 4), it is also compatible with triangle SCM
(N = 3). With triangle SCM, triangles from both com-
mand domains can be mapped directly to the same set of
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Fig.23 Examples from experiment demonstrating the use of SCM to transfer MPC from a simulated teacher to a Clearpath Jackal UGV at different

time frames

prevertices on a disk or an upper half-plane, simplifying
the process by eliminating the need to connect both ends

with a unit disk. However, rectangle SCM is preferred in

()

Fig. 24 The result of directly applying the simulated teacher’s com-

mands to the Jackal

practice because it can incorporate more command pairs
without as much concern for SCM crowding issues.

. The distribution density of the command pairs. Our

proposed approach directly transfers the control input by
geometrically mapping across the command domains.
The nature of this approach depends on accurate com-
mand pairs and benefits from selecting pairs that are
geometrically close to the desired command. Closer com-
mand pairs are more effective as they capture local
geometric information more accurately and better reflect
the learner system’s similar motions. Thus, having the
mapping area well covered by the command pairs is
advantageous.

. Transferring between high-dimensional(>3) control

spaces. The approach presented in this work aims
to demonstrate the concept of leveraging conformal
mapping to directly transfer control inputs between
systems with two-dimensional control spaces. By fol-
lowing the same principle, conformal mapping methods

@ Springer
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Fig. 25 Figure (a) presents the result of deactivating the proposed
approach and directly applying the teacher’s command at different
points during the task; (b)-(f) show the learner’s trajectory, the reference

in high-dimensional spaces could potentially be used
to directly transfer control inputs between systems with
high-dimensional control spaces. One alternative for sys-
tems with high-dimensional control spaces is Liouville’s
Theorem (LT) [52], a well-established theory for confor-
mal mappings in spaces of dimension three or higher.
However, LT also states that in Euclidean spaces of
dimension greater than two, conformal mappings must,
by necessity, be Mdbius transformations (i.e., a trans-
lation, a magnification, an orthogonal transformation, a
reflection through reciprocal radii, or a combination of
these transformations). This restriction indicates that the
potential for using multidimensional conformal mapping
to transfer control inputs may be more limited than in
the two-dimensional case, given the wealth of conformal
maps available in the plane. Therefore, if possible, we
encourage leveraging a bijective representation of high-
dimensional systems in two-dimensional spaces to fully
benefit from the richness of 2D conformal mapping.

Moving forward, having demonstrated that conformally
transferring control inputs between different control domains
can enable smooth sim-to-real transitions, we plan to compare
our proposed approach with other state-of-the-art sim-to-real

@ Springer

states, and the predicted states from the teacher’s MPC controller at the
moment the learner crashes into obstacles

transfer methods. We also aim to expand our proposed frame-
work to facilitate command transfer between heterogeneous
robotic systems, addressing and mitigating more challeng-
ing model discrepancies. Potential future directions include
expanding our proposed framework to facilitate knowledge
transfer between a limited teacher and more capable learners.
In scenarios where learners possess greater capabilities, our
framework can effectively align the learner’s performance
with that of a limited teacher, serving as a baseline, while
employing additional techniques to harness and maximize
the learner’s capabilities. Additionally, we are interested in
utilizing SCM to transfer control and planning policies from
low-dimension to high-fidelity representations.
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